Arrester − Transformer Separation Distance in Substations

Arresters, Substations

How far from a transformer can arresters be located yet still ensure an adequate margin of protection? The answer is not so simple and requires some explanation. One rule of thumb is “locate the arrester as close to the transformer bushing as possible”. Indeed, this is what I usually recommend, although it is not always possible – especially at higher system voltages.

At 400 kV and higher voltages, arresters become too large to be easily supported by the transformer’s body and must be mounted on separate pedestals. Such ‘extended’ separation distance is also needed in cases where transformers have to be easily moved for repair. Access roads for this purpose can result in up to 30 m of separation of arrester from transformer.

Unfortunately, separation distance (or protective zone) of this magnitude can result in reduced protection when a fast rising surge enters the station from an overhead line at nearly the speed of light. When the surge hits the arrester, voltage is indeed reduced – but not to zero and, at best, to the discharge voltage of the arrester. The resulting surge traveling past the arrester is reflected at the transformer, which can result in voltage doubling if the separation distance is sufficiently great. While in most cases reflected voltage only increases incoming surge by a few percent, it is this traveling wave phenomenon and the associated reflection factor that highlight the importance of separation distance.

Fig. 1: Typical arrester-transformer configuration in a HV substation.

Help is offered in IEEE’s Application Guide on Arresters C62.22 and a few words of advice are offered in IEC 60099-5. In C62.22, a formula helps determine the maximum distance at which an arrester can be mounted and still achieve a protection margin of 15%. To illustrate how this formula works in graphical terms from my preferred transient program, ATP, simulation results of a substation with arresters located 1 m (Fig. 2), 15 m (Fig. 3) and 30 m (Fig. 4) from the 500 kV transformer bushing. All other parameters are the same and these numbers were chosen only to demonstrate simple insulation coordination in a substation. The arresters are mounted on a pedestal that results in 5 meters from earth ground to the base with their tops located 1 meter from the incoming line.

Fig. 2: Transient voltages in substation with 1m separation distance.

As shown in Fig. 2, the voltages at the arrester and transformer are, as expected, identical and peak out at 1326 kV. This leaves a margin of protection of 16% for a 1550 kV BIL transformer, which is the minimum recommended according to IEC and IEEE. The simulation in Fig. 3, with 15 m between arrester and transformer bushing, sees margin of protection reduced to only 8%, which is less than recommended but still not above the transformer’s BIL of 1550 kV.

Fig. 3: Transient voltages in substation with 15 m separation distance.

Fig. 4 makes it clear that 30 m separation distance would result in the voltage at the transformer exceeding its withstand level (BIL), meaning that a fast rising surge entering the station in such a case could well cause serious damage. Therefore, if for whatever reason it became necessary for the arrester to be located 30 m from the bushing, a transformer with higher withstand (BIL) would have to be specified.

Fig. 4: Transient voltages in substation with 30 m separation distance.

Separation distance is also a consideration with other equipment in the substation. For example, if a CCVT, CVT, PT or breaker are sited at an end point on a short line, they would experience the same excessive transient voltage as shown in the examples of the transformer. An arrester should therefore ideally also be installed to protect them. Indeed, protecting high value assets against transients is an important part of substation design and placing arresters at the proper distance from the equipment they serve is critical to ensuring adequate protection in each case.


The INMR WORLD CONGRESS is a skills-building and technical enrichment event for engineers and other professionals in the field of power transmission & distribution. It is comprised of a 3-day Conference and PRODUCT & TECHNOLOGY EXHIBITION.