MENU
Device Tests Polymeric Insulators at Transmission Voltages
ADVERTISEMENT inmr adv CTC

Receive Free Offer

The continued growth of polymeric insulators is being driven by their many advantages. However, with this growth at both distribution and transmission voltages, the challenges of protecting the grid and maintaining system reliability depend on their proper inspection and testing. Moreover, as system voltages as well as criticality of lines increase, it becomes imperative to understand the performance of all key line components, especially insulators.
At the same time, with growing acceptance of polymeric insulators, more manufacturers are entering the business. However, there must be a conservation of past practices and processes to keep the grid safe and reliable as the power utility industry assumes a global perspective when it comes to sourcing and procurement of line components.
This article, based on a contribution by Jeff Butler of Hubbell Power Systems at the recent 2015 INMR WORLD CONGRESS in Munich, Germany discusses newly introduced insulator inspection equipment for transmission line operators. The goal of this device is to help utilities maintain their lines and protect their linemen who work on transmission lines equipped with polymeric insulators.


In the early 1960s, as the efficiency of performing live-line bare hand work was being realized, technology had not yet developed a trustworthy way to confirm the integrity of the ceramic insulating bells. Beyond crude methods of visual inspection or impact tests, it was only years later that the first ceramic bell testers were implemented. Since then, it is generally accepted as an essential requirement for ensuring worker safety to confirm the electrical integrity of the installed insulators prior to performing bare hand work on energized lines. Due to modular design of the string, the practice of using a tester on each ceramic bell came to be employed. If that process determined that there were a necessary number of good bells, the linemen could safely proceed with work. By contrast, the advantage of a single piece design has proven an obstacle in using an equivalent modular test approach for polymeric insulators. Moreover, with the extended length of insulator strings with increasing EHV and even UHV applications, it became impossible to determine the status of polymeric insulators using the same type of inspection methods traditionally used for ceramic insulators.

Components of polymeric insulator tester. device tests polymeric insulators at transmission voltages Device Tests Polymeric Insulators at Transmission Voltages Screen Shot 2016 02 12 at 3

Fig. 1: Components of polymeric insulator tester.

Development of Test Method

In 2003, the Electric Power Research Institute (EPRI) initiated a project to develop a tester to assess the electrical integrity of polymeric insulators. Among the goals was developing a unit that was lightweight, reliable and could detect defects under either energized or de-energized conditions. Based on a lightweight power supply, a test instrument was developed that uses an algorithm comparing the responding resonant frequency of an emitted signal to defined parameters representing a known sound polymeric insulator.

As the tester samples a defined length of an insulator, if the resonant frequency or signal frequency is outside defined parameters, that section of insulator is determined to have low electrical integrity. On the other hand, if the resonant frequency and signal are within the parameters, then this section of insulator has the required electrical integrity. Using this methodology, both internal and external defects have been found. Basically, the new tester functions like the ceramic bell tester as each unit or section must be tested to determine the status of the whole insulator. The tester is also able to test a de-energized insulator, which offers the advantage of being able to test insulators prior to installation or after removal from the line.

Realization of Design

The EPRI designed tester has been able to provide a polymeric insulator test method that is similar to that employed on ceramic bells with the added benefit of being able to test even under de-energized conditions.

View of indicating lights and power switch at back of unit. device tests polymeric insulators at transmission voltages Device Tests Polymeric Insulators at Transmission Voltages Screen Shot 2016 02 12 at 3

Fig. 2: View of indicating lights and power switch at back of unit.

The proper use of the equipment sees the operator use a ‘hotstick mount’ to attach it to an insulated universal pole (hotstick) of adequate length to maintain proper safe working clearance from all potentially energized parts of the system. If testing a de-energized insualtor, the use of the short insulated handle provided with the unit is recommended. The ‘Probe Spacing Adjust’ is used to achieve the proper fit of the ‘V Probes’ between the insulator sheds and the unit is then turned on and set into the calibration mode, selected by depressing either of the ‘V Probes’ during the initial boot-up process. The unit is in calibration mode as indicated by a steady green light and a flashing white light and is calibrated by using either a known good section of the insulator or using the calibration insulator sections provided with the tester.

Tester is properly seated on insulator when V probes are fully depressed. device tests polymeric insulators at transmission voltages Device Tests Polymeric Insulators at Transmission Voltages Screen Shot 2016 02 12 at 3

Fig. 3: Tester is properly seated on insulator when V probes are fully depressed.

The tester is seated on the section of insulator to be used for calibration by fully depressing both ‘V Probes’ simultaneously against the insulator, as shown in Fig. 3. Blue lights will illuminate at either end of the tester indicating that the probes have been fully engaged.

Calibration is done automatically when the probes are properly engaged for about 1 second. During the sampling process, the tester generates a high frequency, high voltage signal (1.5 kV, 1.5 MHz) using the resonant power supply. In calibration mode, the data collected from the generated signal is used to establish parameters that will function as the baseline for comparison during the testing mode. Proper calibration has been performed with the indication of the solid white LED and a long beep and the unit must be powered off in order to store the calibration data to memory.

Page 1 of 212

Related Posts

« »

Comments are closed.

INMR advertisers include: