MENU MENU

Detecting Composite Insulator Designs Susceptible to Brittle Fracture

April 29, 2017 • ARTICLE ARCHIVE, Insulators, Maintenance
CTC Logo
GIG Advertisement

The population of composite insulators in medium and high voltage grids worldwide is growing constantly. As numbers of these insulators increase, so do cases of failure. In HV networks, a sudden and serious failure mode called brittle facture has occurred over the past few decades and is regarded as dangerous to the whole surroundings of a power line. In the Hungarian grid, for example, this kind of failure has occurred since a few years. Although in certain applications (e.g. road, railway or river crossings, populated areas, etc.) double insulator strings are being applied by national regulations, this cannot always guarantee safety (e.g. in the event of dynamic mechanical forces, mechanical overload, double failures, etc.). This recent INMR article, based on a contribution by Dr. Bálint Németh and Gábor Göcsei at the HV Laboratory of Budapest University of Technology and Economics in Hungary, proposed a methodology to test for risk of such failures.


Inspection Methods

There are several known inspection methods to detect brittle fracture failure at an early stage. However, these examinations are mostly chemical or optical tests, e.g.:

Detecting Composite Insulator Designs Susceptible to Brittle Fracture composite insulator Detecting Composite Insulator Designs Susceptible to Brittle Fracture Fig

Fig. 1: SEM image of inspected sample.
CLICK TO ENLARGE

Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) is one of the most common inspection methods but requires high resolution images of samples. In regard to brittle fracture, a cross-section of the insulator is inspected to determine condition of the fibers in the core rod. Special attention is required since the condition of the sample surface has an effect on results. In the case of SEM inspections conducted at the HV Laboratory of Budapest University of Technology and Economics (BUTE), for example, all samples were first prepared, polished and examined by the university’s Electronics Technology Laboratory. Fig. 1 shows an SEM image of an insulator sample with an uneven surface on the perimeter of the fiberglass rod. Variation in density can clearly be observed.

 

X-Ray Photoelectron Spectroscopy (XPS), Laser Induced Breakdown Spectroscopy (LIBS), Secondary Ion Mass Spectrometry (SIMS)

In regard to the inspection of brittle fracture, X-Ray Photoelectron Spectroscopy (XPS), Laser Induced Breakdown Spectroscopy (LIBS) and Secondary Ion Mass Spectrometry (SIMS) all aim to detect boron content in the samples examined, seen as mainly responsible for chemical corrosion of the insulators. XPS, by contrast, is able to analyze the amount of any given chemical element in samples. A high oxygen concentration indicates oxidation, which is considered one of the possible root causes of ageing and eventual brittle fracture.

Detecting Composite Insulator Designs Susceptible to Brittle Fracture composite insulator Detecting Composite Insulator Designs Susceptible to Brittle Fracture Fig

Fig. 2: XPS samples of inspected insulator: Cls (left) and Si2p (right)
CLICK TO ENLARGE

A new generation of composite insulators are now made without boron and often referred to as ‘boron-free’. Such inspections require high accuracy and precision. In the case of examinations executed at BUTE, the Department of Atomic Physics was responsible for analyzing samples.

Detecting Composite Insulator Designs Susceptible to Brittle Fracture composite insulator Detecting Composite Insulator Designs Susceptible to Brittle Fracture Fig

Fig. 3: Example of SIMS (left) and LIBS (right) analysis of samples.
CLICK TO ENLARGE

Energy Dispersive X-Ray (EDX)

Energy Dispersive X-Ray (EDX) combined with Scanning Electron Microscopy (SEM) is an effective way to analyze insulator samples. SEM-EDX results are similar to results of FTIR and therefore such independent sources of data can complete and validate one another.

Detecting Composite Insulator Designs Susceptible to Brittle Fracture composite insulator Detecting Composite Insulator Designs Susceptible to Brittle Fracture Fig

Fig. 4: Comparison of SEM-EDX and XPS results.
CLICK TO ENLARGE

In the High Voltage Laboratory of BUTE, for example, both SEM-EDX and XPS inspections have been conducted and comparison of results for different samples are shown in Fig. 4. It can be seen that the results of SEM-EDX and XPS were in accordance with each other in the case of all insulator samples inspected.

Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) is one of the most common ways to detect marks of brittle fracture at an early stage in failure and components of a given sample can be analyzed with this methodology. Each element has a characteristic absorption wavelength in the spectrum. With regard to brittle fracture, nitric acid – generated as a result of the presence of moisture and high electric field – leads to significant absorption at the wavelength of 1384 cm-1, as shown in Fig. 5.

Detecting Composite Insulator Designs Susceptible to Brittle Fracture composite insulator Detecting Composite Insulator Designs Susceptible to Brittle Fracture Fig

Fig. 5: Characteristic absorbed FTIR wavelength at 1384 cm-1 in inspected sample.
CLICK TO ENLARGE

Research Summary

Based on practical experience, FTIR is particularly effective to detect marks of brittle fracture in a given sample with a good technical-cost balance. The presence of boron makes insulators vulnerable to brittle fracture and this is effectively detected using XPS, LIBS and SIMS examinations. SEM combined with EDX is a good way to inspect the oxide content (i.e. level of oxidation) of insulators.

1

2

INMR advertisers include: